Interaction of Smoothing and Pruning

Arthur Kantor

Department of Computer Science University of Illinois - Urbana Champaign

September 13, 2010

Interaction of Smoothing and Pruning

Outline

- What?
 - Evaluating Language Model Quality
 - ML Language Model
- - Additive Smoothing
 - Good-Turning Smoothing
 - Katz/Good-Turning Smoothing
 - Kneser-Ney Smoothing
- - Entropy-based Pruning

What is a Language Model?

- Language model: a distribution over possible word strings
- If we have a sequence $w_1, ..., w_l$ of l words, the language model is the distribution

$$\rho(w_1, ..., w_l) = \prod_{i=1}^{l} \rho(w_i | w_1, ..., w_{i-1})$$

$$\approx \prod_{i=1}^{l} \rho(w_i | w_{i-n+1}, ..., w_{i-1})$$

$$= \prod_{i=1}^{l} \rho(w_i | h) \tag{1}$$

Interaction of Smoothing and Pruning

- Equation 1 assumes that words are conditionally independent, given they are separated by a long enough history h of n-1 words.
- n is the order of the n-gram language model.
- If i n + 1 < 1, we can simply pad the beginning of the text with a special <BEGINNING> token.

Evaluating Language Model Quality

Evaluating the model quality

Language Model quality is measured with Cross-Entropy

$$H_{pq}(w|h) = -\sum_{w,h} q(w,h) \log p(w|h)$$

Interaction of Smoothing and Pruning

- p(w, h) and q(w, h) are the distributions over word sequences estimated from the training and development data, respectively.
- We can write

$$H_{pq}(w|h) = H_p(w|h) + D_{KL}(p(w|h)||q(w|h))$$

so we are minimizing the sum of conditional entropy of training distribution and the conditional KL-divergence between the training and development distributions.

Evaluating Language Model Quality

Relationship of cross-entropy and Word Error Rate

- Difficult to describe analytically
- Empirically, The WER and model perplexity are related by the power law [Klakow, Peters 2002]:

$$\log WER = a + bH_{pq}(w|h)$$

Interaction of Smoothing and Pruning

where a and b are constants that depend on the data and the quality of the acoustic model.

- Relative WER improvement is proportional to decrease of cross entropy of the LM.
- On planned speech (Broadcast News corpus, DARPA 1996) and 1997 competitions), the relative WER improvement is 12%-20% for each bit decrease of cross-entropy

The maximum likelihood language model

Let C(x) be the number of times the word string x is seen in the training corpus.

Maximum Likelihood estimate

$$p_{ML}(w|h) = \frac{C(h,w)}{C(h)}$$

That was easy, right?

However

 $p_{MI}(w|h)$ is a poor estimate when the training data is sparse.

The training data is sparse

Fisher corpus:

- 57036 words, 1.85×10^{14} possible trigrams
- 21.9 million tokens cover at most 0.0000118% of trigrams

If training data sparsity is not a problem, you can make a higher-order LM with lower cross-entropy, and training data sparsity again becomes a problem.

What's the problem?

Smoothing

- $p_{MI}(w|h)$ underestimates the probability of n-grams never seen in the training data.
 - Never-seen ngrams account for a large probability mass of the true n-gram distribution.
- $p_{MI}(w|h) = 0$ precludes the recognizer from hypothesizing w|h even if the acoustic model fits perfectly.

Solution: Smoothing

Raise the probability of low-probability n-grams and lower the probability of high-probability n-grams

Interaction of Smoothing and Pruning

What?

Outline

- - Evaluating Language Model Quality
 - ML Language Model
- **Smoothing**
 - Additive Smoothing
 - Good-Turning Smoothing
 - Katz/Good-Turning Smoothing
 - Kneser-Ney Smoothing
- - Entropy-based Pruning

An old problem.

- Laplace considered smoothing in his "Will the sun rise tomorrow?" question.
- Sun not rising is a rare event, unobserved in the known past. What is the probability $p(Sun \ not \ rising \ tomorrow)$?

Interaction of Smoothing and Pruning

- According to prior knowledge, two outcomes are possible: pretend they happened and add them as pseudocounts to the observed counts. $p(x) = \frac{C(x) + 1}{C(x) + 2}$
- Generalizing to |V| objects so that $w \in V$, and allowing pseudocounts smaller than 1, we get

additive smoothing

$$p_{add}(w|h) = \frac{C(h, w) + \alpha}{C(h) + \alpha|V|}$$
 $0 < \alpha \le 1$

Simple, but yields poor models (discounts too much).

Good-Turning Smoothing

What?

Count-of-counts Definition

- Group n-grams by the number of times an n-gram was seen in the training data.
- Define n_r be the total number of n-grams each of which has been r times (count of counts)
- Define the event of encountering any n-gram that has been seen r times in the training data as M_r .
- According to the ML distribution, the probability of seeing event M_r is

$$p_{ML}(M_r) = \frac{n_r r}{N}$$

where *N* is the total number of n-grams: $N = \sum_{r=1}^{\infty} n_r r$

Main Idea

What?

Probability mass assigned to all n-grams observed r times in training data is spread equally among the n-grams seen r-1times.

Interaction of Smoothing and Pruning

Good-Turing distribution p_{GT} is defined to satisfy

$$p_{GT}(M_r) = p_{ML}(M_{r+1})^{\iota}$$

The probability mass assigned to all unseen n-grams is $p_{GT}(M_0) = p_{MI}(M_1).$

(see the board)

Definition

What?

Good-Turing smoothing adjusts the counts *r* seen in the training data

$$ho_{GT}(M_r) = p_{ML}(M_{r+1})$$

$$\frac{n_r r^*}{N} = \frac{n_{r+1}(r+1)}{N}$$

$$r^* = \frac{n_{r+1}}{n_r}(r+1)$$

Good-Turing Smoothing

$$p_{GT}(w_i, h) = \frac{r^*(h, w_i)}{N}$$

Definition requires that $n_r > 0$. In practice only n-grams with $r(h, w_i) < k$ are smoothed, and $p_{GT}(h, w_i)$ is re-normalized.

Why this particular discount r^* ?

r* is the solution to

$$\frac{r^*}{N} \approx E(p_i|C(w_i) = r)$$

Interaction of Smoothing and Pruning

where w_i is one of s n-grams, with true frequency p_i .

• $E(p_i|C(w_i)=r)$ is the expected probability for some n-gram w_i , where we don't know the identity of w_i but we know it was observed $C(w_i)$ times in the training data.

Katz/Good-Turning Smoothing

What?

Katz Smoothing

- In GT smoothing, the discounted probability mass $p_{Ml}(M_1)$ is uniformly spread among unseen n-grams.
- In Katz smoothing, the discounted probability mass is spread among unseen n-grams weighted by (n-1)-order model $p(w_i|w_{i-n+2},...w_{i-1})$

Definition

What?

Katz/Good-Turing smoothing

$$p_{katz}(w_i|h) = \begin{cases} d_r(h, w_i) \frac{C(h, w_i)}{C(h)} & \text{if } r > 0 \\ \alpha_h p_{katz}(w_i|w_{i-n+2}, ..., w_{i-1}) & \text{if } r = 0 \end{cases}$$

For Good-Turing discounting,

$$d_r(h, w_i) \approx \frac{r^*(h, w_i)}{r(h, w_i)}$$

 \bullet α_h is chosen so that the probability mass to be allocated by the (n-1)-gram model is equal to the probability mass discounted from the r > 0 n-grams.

Katz/Good-Turning Smoothing

Computing α_h

Katz/Good-Turing smoothing

Smoothing

0000000000000

$$p_{katz}(w_i|h) = \begin{cases} d_r(h, w_i) \frac{C(h, w_i)}{C(h)} & \text{if } r > 0 \\ \alpha_h p_{katz}(w_i|w_{i-n+2}, ..., w_{i-1}) & \text{if } r = 0 \end{cases}$$

Let

$$p_{katz}(M_0|h) = 1 - \sum_{\{w_i: C(h,w_i)>0\}} d_{r(h,w_i)} \frac{C(h,w_i)}{C(h)}$$

be the probability mass allocated to the event of encountering any n-gram unseen in the training data given a history h.

α_h must satisfy

$$\alpha_h \sum_{\{w_i: C(h, w_i) = 0\}} p_{katz}(w_i | w_{i-n+2}, ..., w_{i-1}) = p_{katz}(M_0 | h)$$

Smoothing

Kneser-Nev Smoothing

Motivation

What?

- Consider a bigram LM where the phrase "SAN FRANCISCO" is frequent, and "FRANCISCO" is almost always preceded by the word "SAN".
- The unigram probability of "FRANCISCO" will be high, and with $p_{katz}(w_i|h)$ it will have a high probability following some unseen history, say "APPLE FRANCISCO".
- But this is probably wrong, because "FRANCISCO" should only follow the one history "SAN".

Kneser-Ney smoothing addresses this situation.

Definition

What?

Let $N_{1+}(h, \bullet)$ be the number of unique n-grams seen in the training one or more times with history h.

Kneser-Ney smoothing

$$p_{KN}(w_i|h) = \frac{\max\{C(h, w_i) - D, 0\}}{\sum_{w_i} C(h, w_i)} + \frac{D}{\sum_{w_i} C(h, w_i)} N_{1+}(h, \bullet) p_{KN}(w_i|w_{i-n+2}, ..., w_{i-1})$$

D < 1 is the absolute discount subtracted from all n-grams seen in the training data.

Derivation of $p_{KN}(w_i|w_{i-n+2},...,w_{i-1})$

The original objective for Knesser-Ney smoothing was for the smoothed distribution marginalized over the left-most word in the history to equal the marginalized ML distribution:

$$\sum_{w_{i-n+1}} p_{KN}(w_{i-n+1},...,w_i) = p_{ML}(w_{i-n+2},...,w_i)$$

Combining the above with $p_{kn}(w_i|h)$ form yields

$$p_{KN}(w_i|w_{i-n+2},...,w_{i-1}) = \frac{N_{1+}(\bullet,w_{i-n+2},...,w_i)}{\sum_{w_i}N_{1+}(\bullet,w_{i-n+2},...,w_i)}$$

which itself could be KN-smoothed.

A little non-obvious: see SRILM ngram-discount man page for details. (n-1)-order model allocates a bigger portion of the discount to words having more left histories: "APPLE FRANCISCO" is unlikely.

Some comments

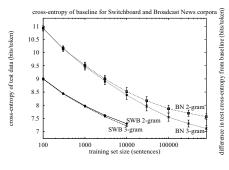
Kneser-Ney smoothing

$$\begin{aligned} p_{KN}(w_i|h) &= \frac{\max\{C(h,w_i) - D,0\}}{\sum_{w_i} C(h,w_i)} \\ &+ \frac{D}{\sum_{w_i} C(h,w_i)} N_{1+}(h,\bullet) p_{KN}(w_i|w_{i-n+2},...,w_{i-1}) \\ p_{KN}(w_i|w_{i-n+2},...,w_{i-1}) &= \frac{N_{1+}(\bullet,w_{i-n+2},...,w_i)}{\sum_{w_i} N_{1+}(\bullet,w_{i-n+2},...,w_i)} \end{aligned}$$

- (n-1)-order model allocates a bigger portion of the discount to words having more left histories: "APPLE FRANCISCO" is unlikely.
- (n-1)-order is not estimating the true distribution $p(w_i|w_{i-n+2},...,w_{i-1})!$

$$p_{KN}(w_i|w_{i-n+2},...,w_{i-1}) \neq p(w_i|w_{i-n+2},...,w_{i-1})$$

How well do they work?



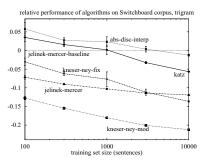


Figure: Baseline LM performance. From previous slide: "On planned speech (Broadcast News corpus, DARPA 1996 and 1997 competitions), the relative WER improvement is 12%-20% for each bit decrease of cross-entropy."

Interaction of Smoothing and Pruning

What?

- - Evaluating Language Model Quality
 - ML Language Model

Smoothing

- - Additive Smoothing
 - Good-Turning Smoothing
 - Katz/Good-Turning Smoothing
 - Kneser-Ney Smoothing
- **Pruning**
 - Entropy-based Pruning

Language Models can be large - too many parameters for an ASR recognizer to handle efficiently

Solution: Pruning

Remove parameters from an LM by removing explicitly represented n-grams, so they can be approximated by lower-order n-grams

The goal is to remove the n-grams in such a way that minimizes the damage (in terms of cross-entropy) to the LM

Drop n-grams that are seen less than *k* times.

- Simple
- Only coarse control of the model size
- For a given model size, lower cross-entropies can be achieved with other pruning methods.

Entropy-based Pruning [Stolcke 2000]

Idea: Prune the least damaging n-gram, one at a time, until the model is the desired size.

Least Damaging: The n-gram, whose removal minimize the KL-divergence between the original LM $p(w_i|h)$ and the pruned model $p'(w_i|h)$.

$$D_{KL}(p(w_i|h)||p'(w_i|h)) = \sum_{w_i,h} p(w_i,h) (\log p(w_i|h) - \log p'(w_i|h))$$

Entropy-based Pruning

What?

Entropy-based Pruning advantages

Advantages

- Can prune an arbitrary number of n-grams.
- Raises the entropy less than removing low-count n-grams.
- Can efficiently update the n-gram probabilities and back-offs and only needs the information in the LM being pruned, so there is no need to keep around the original n-gram counts.

Results

- In [Stolcke 2000], authors show that entropy pruning can reduce the size of the LM by a factor of four without increasing the WER of their recognizer, and raising the LM cross-entropy only slightly.
- Entropy-pruning an n-gram model down to the size of an (n-1)-gram model yields a lower cross-entropy model than just using an unpruned (n-1)-gram model.

Efficient computation of $D_{KL}(p(w_i|h)||p'(w_i|h))$

Removing an n-gram h, w_i from $p(w_i|h)$ changes it only through estimates involving history h, and no other histories. Therefore we can write

$$\begin{aligned} D_{KL}(p(w_i|h)||p'(w_i|h)) &= \sum_{w_i} p(w_i,h) \left(\log p(w_i|h) - \log p'(w_i|h) \right) \\ &= p(h) \sum_{w_i} p(w_i|h) \left(\log p(w_i|h) - \log p'(w_i|h) \right) \end{aligned}$$

- p(h) is computed using only the existing model
 - important for understanding interaction between pruning and smoothing

Interaction of Smoothing and Pruning

What?

- - Evaluating Language Model Quality
 - ML Language Model
- - Additive Smoothing
 - Good-Turning Smoothing
 - Katz/Good-Turning Smoothing
 - Kneser-Ney Smoothing
- - Entropy-based Pruning
- Interaction of Smoothing and Pruning

Remember pruning criterion:

What?

$$D_{\mathit{KL}}(p(w_i|h)||p'(w_i|h)) = p(h) \sum_{w_i} p(w_i|h) \left(\log p(w_i|h) - \log p'(w_i|h)\right)$$

p(h) is calculated from the smoothed model model:

$$p(h) = p(w_{i-n+1}, ..., w_{i-1})$$

$$= p_{model}(w_{i-n+1}) \prod_{i=1}^{n-2} p_{model}(w_{i-j}|w_{i-n+1}, ..., w_{i-j-1})$$

- Makes sense for Katz/Good-Turing smoothing.
- for Kneser-Ney smoothing the lower order models are not an estimate for the true n-gram distribution.
 - p(h) calculated from a Kneser-Ney smoothed LM will be a poor estimate of the true distribution.
 - $D_{Kl}(p(w_i|h)||p'(w_i|h))$ will be inaccurate.

Correcting p(h) is not enough.

- Estimating p(h) correctly (say from maximum likelihood or Katz/Good-Turing smoothed models) helps, but still worse than good-turing smoothing + entropy pruning [Chelba, Brants, Neveitt, Xu, 2010].
- Simply removing n-grams from higher-order Kneser-Ney smoothed models introduces problems.
 - (n-1)-order models are not designed to model n-grams which occur in the upper-level models.
- Aggressively pruning the vocabulary hurts KN-smoothed LMs for the same reasons.
 - Words with low token counts are removed ⇒ their n-grams are also pruned from the n-order model.
 - (n-1)-models are forced to model (n-1)-grams that were excluded from their training.

Example

3-gram LM with 10,000 word vocabulary, trained on 80% of the Fisher Corpus.

Interaction of Smoothing and Pruning

Table: Effect of pruning on the cross-entropy (bits) of smoothed models.

	GT-smoothing	KN-smoothing
no pruning	6.722	6.686
pruning	6.809	6.819

see http://mickey.ifp.uiuc.edu/wiki/Fisher Language Model for experiments showing these trends

- Knesser-Ney smoothing creates monolithic language models
 - Knesser-Ney smoothing outerperforms Good-Turing smoothing if nothing else is done to it
 - Lower order n-grams cannot be used independently of the highest order n-grams

Interaction of Smoothing and Pruning

- Lower order n-grams are a bad estimate of the true distribution p(w|h)
- vocabulary pruning and entropy-based pruning ruins a Knesser-Nev smoothed model
- Good-Turing smoothing of n-order LMs contains good (n-1)-order LMs within it
 - Lower order n-grams can be used independently of the highest order n-grams
 - Lower order n-grams are a good estimate of the true distribution p(w|h)
 - vocabulary pruning and entropy-based pruning works OK with a Good-Turing smoothed model

Interaction of Smoothing and Pruning

What?

- - Evaluating Language Model Quality
 - ML Language Model
- - Additive Smoothing
 - Good-Turning Smoothing
 - Katz/Good-Turning Smoothing
 - Kneser-Ney Smoothing
- - Entropy-based Pruning
- What Else?

References

What?

- Chen and Goodman, 1998 "An Empirical Study of Smoothing Techniques for Language Modeling"
- Stolcke, 2000 "Entropy-based pruning of backoff language" models"
- http://www.speech.sri.com/projects/srilm/ manpages/ngram-discount.7.html
- Chelba, Brants, Neveitt, Xu, 2010 "Study on Interaction" between Entropy Pruning and Kneser-Ney Smoothing"
- Klakow and Peters 2002 "Testing the correlation of word error rate and perplexity"
- http://mickey.ifp.uiuc.edu/wiki/Fisher Language Model