Language Models for Speech Recognition

Arthur Kantor

Department of Computer Science
University of Illinois - Urbana Champaign

September 13, 2010
Outline

1. **What?**
 - Evaluating Language Model Quality
 - ML Language Model

2. **Smoothing**
 - Additive Smoothing
 - Good-Turning Smoothing
 - Katz/Good-Turning Smoothing
 - Kneser-Ney Smoothing

3. **Pruning**
 - Entropy-based Pruning

4. **Interaction of Smoothing and Pruning**

5. **What Else?**
What is a Language Model?

- Language model: a distribution over possible word strings
- If we have a sequence w_1, \ldots, w_i of l words, the language model is the distribution

$$p(w_1, \ldots, w_i) = \prod_{i=1}^{l} p(w_i \mid w_1, \ldots, w_{i-1})$$

$$\approx \prod_{i=1}^{l} p(w_i \mid w_{i-n+1}, \ldots, w_{i-1})$$

$$= \prod_{i=1}^{l} p(w_i \mid h) \quad (1)$$

- Equation 1 assumes that words are conditionally independent, given they are separated by a long enough history h of $n - 1$ words.
- n is the order of the n-gram language model.
- If $i - n + 1 < 1$, we can simply pad the beginning of the text with a special $<$BEGINNING$>$ token.
Evaluating the model quality

Language Model quality is measured with Cross-Entropy

\[H_{pq}(w|h) = - \sum_{w,h} q(w, h) \log p(w|h) \]

- \(p(w, h) \) and \(q(w, h) \) are the distributions over word sequences estimated from the training and development data, respectively.
- We can write

\[H_{pq}(w|h) = H_p(w|h) + D_{KL}(p(w|h)\|q(w|h)) \]

so we are minimizing the sum of conditional entropy of training distribution and the conditional KL-divergence between the training and development distributions.
Difficult to describe analytically

Empirically, The WER and model perplexity are related by the power law [Klakow, Peters 2002]:

$$\log WER = a + bH_{pq}(w|h)$$

where a and b are constants that depend on the data and the quality of the acoustic model.

Relative WER improvement is proportional to decrease of cross-entropy of the LM.

On planned speech (Broadcast News corpus, DARPA 1996 and 1997 competitions), the relative WER improvement is 12%-20% for each bit decrease of cross-entropy
Let $C(x)$ be the number of times the word string x is seen in the training corpus.

Maximum Likelihood estimate

$$p_{ML}(w|h) = \frac{C(h, w)}{C(h)}$$

That was easy, right?

However

$p_{ML}(w|h)$ is a poor estimate when the training data is sparse.
The training data is sparse

Fisher corpus:
- 57036 words, 1.85×10^{14} possible trigrams
- 21.9 million tokens cover at most 0.0000118% of trigrams

If training data sparsity is not a problem, you can make a higher-order LM with lower cross-entropy, and training data sparsity again becomes a problem.
What’s the problem?

- $p_{ML}(w|h)$ underestimates the probability of n-grams never seen in the training data.
 - Never-seen n-grams account for a large probability mass of the true n-gram distribution.
- $p_{ML}(w|h) = 0$ precludes the recognizer from hypothesizing $w|h$ even if the acoustic model fits perfectly.

Solution: Smoothing

Raise the probability of low-probability n-grams and lower the probability of high-probability n-grams
Outline

1. What?
 - Evaluating Language Model Quality
 - ML Language Model

2. Smoothing
 - Additive Smoothing
 - Good-Turning Smoothing
 - Katz/Good-Turning Smoothing
 - Kneser-Ney Smoothing

3. Pruning
 - Entropy-based Pruning

4. Interaction of Smoothing and Pruning

5. What Else?
Laplace considered smoothing in his “Will the sun rise tomorrow?” question.

Sun not rising is a rare event, unobserved in the known past. What is the probability \(p(\text{Sun not rising tomorrow}) \)?

According to prior knowledge, two outcomes are possible: pretend they happened and add them as pseudocounts to the observed counts. \(p(x) = \frac{C(x) + 1}{C(x) + 2} \)

Generalizing to \(|V| \) objects so that \(w \in V \), and allowing pseudocounts smaller than 1, we get

\[
p_{add}(w|h) = \frac{C(h, w) + \alpha}{C(h) + \alpha|V|} \quad 0 < \alpha \leq 1
\]

Simple, but yields poor models (discounts too much).
Good-Turning Smoothing

Count-of-counts Definition

- Group n-grams by the number of times an n-gram was seen in the training data.
- Define n_r be the total number of n-grams each of which has been r times (count of counts)
- Define the event of encountering any n-gram that has been seen r times in the training data as M_r.
- According to the ML distribution, the probability of seeing event M_r is

$$p_{ML}(M_r) = \frac{n_r r}{N}$$

where N is the total number of n-grams: $N = \sum_{r=1}^{\infty} n_r r$
Good-Turning Smoothing

Main Idea

Probability mass assigned to all n-grams observed \(r \) times in training data is spread equally among the n-grams seen \(r - 1 \) times.

Good-Turing distribution \(p_{GT} \) is defined to satisfy

\[
p_{GT}(M_r) = p_{ML}(M_{r+1})'
\]

The probability mass assigned to all unseen n-grams is

\[
p_{GT}(M_0) = p_{ML}(M_1).
\]

(see the board)
Good-Turing Smoothing

Definition

Good-Turing smoothing adjusts the counts r seen in the training data

$$p_{GT}(M_r) = p_{ML}(M_{r+1})$$

$$\frac{n_r r^*}{N} = \frac{n_{r+1}(r + 1)}{N}$$

$$r^* = \frac{n_{r+1}}{n_r}(r + 1)$$

Definition requires that $n_r > 0$. In practice only n-grams with $r(h, w_i) < k$ are smoothed, and $p_{GT}(h, w_i)$ is re-normalized.
Why this particular discount r^*?

- r^* is the solution to

$$\frac{r^*}{N} \approx E(p_i|C(w_i) = r)$$

where w_i is one of s n-grams, with true frequency p_i.

- $E(p_i|C(w_i) = r)$ is the expected probability for some n-gram w_i, where we don’t know the identity of w_i but we know it was observed $C(w_i)$ times in the training data.
Katz/Good-Turning Smoothing

Katz Smoothing

- In GT smoothing, the discounted probability mass $p_{ML}(M_1)$ is uniformly spread among unseen n-grams.
- In Katz smoothing, the discounted probability mass is spread among unseen n-grams weighted by (n-1)-order model $p(w_i|w_{i-n+2}, \ldots w_{i-1})$.
Katz/Good-Turing Smoothing

Definition

Katz/Good-Turing smoothing

\[p_{katz}(w_i|h) = \begin{cases}
 d_r(h, w_i) \frac{C(h, w_i)}{C(h)} & \text{if } r > 0 \\
 \alpha_h p_{katz}(w_i|w_{i-n+2}, \ldots, w_{i-1}) & \text{if } r = 0
\end{cases} \]

- For Good-Turing discounting,
 \[d_r(h, w_i) \approx \frac{r^*(h, w_i)}{r(h, w_i)} \]

- \(\alpha_h \) is chosen so that the probability mass to be allocated by the \((n-1)\)-gram model is equal to the probability mass discounted from the \(r > 0\) \(n\)-grams.
Computing α_h

Katz/Good-Turing smoothing

$$p_{katz}(w_i|h) = \begin{cases} \frac{d_r(h, w_i) C(h, w_i)}{C(h)} & \text{if } r > 0 \\ \alpha_h p_{katz}(w_i|w_{i-n+2}, \ldots, w_{i-1}) & \text{if } r = 0 \end{cases}$$

- Let

$$p_{katz}(M_0|h) = 1 - \sum_{\{w_i: C(h, w_i) > 0\}} d_r(h, w_i) \frac{C(h, w_i)}{C(h)}$$

be the probability mass allocated to the event of encountering any n-gram unseen in the training data given a history h.

- α_h must satisfy

$$\alpha_h \sum_{\{w_i: C(h, w_i) = 0\}} p_{katz}(w_i|w_{i-n+2}, \ldots, w_{i-1}) = p_{katz}(M_0|h)$$
Consider a bigram LM where the phrase “SAN FRANCISCO” is frequent, and “FRANCISCO” is almost always preceded by the word “SAN”.

The unigram probability of “FRANCISCO” will be high, and with $p_{katz}(w_i|h)$ it will have a high probability following some unseen history, say “APPLE FRANCISCO”.

But this is probably wrong, because “FRANCISCO” should only follow the one history “SAN”.

Kneser-Ney smoothing addresses this situation.
Let $N_1^+(h, \bullet)$ be the number of unique n-grams seen in the training one or more times with history h.

Knneser-Ney smoothing

$$p_{KN}(w_i|h) = \frac{\max\{C(h, w_i) - D, 0\}}{\sum_{w_i} C(h, w_i)} + \frac{D}{\sum_{w_i} C(h, w_i)} N_1^+(h, \bullet)p_{KN}(w_i|w_{i-n+2}, \ldots, w_{i-1})$$

$D < 1$ is the absolute discount subtracted from all n-grams seen in the training data.
Derivation of $p_{KN}(w_i|w_{i-n+2}, \ldots, w_{i-1})$

The original objective for Kneser-Ney smoothing was for the smoothed distribution marginalized over the left-most word in the history to equal the marginalized ML distribution:

$$\sum_{w_{i-n+1}} p_{KN}(w_{i-n+1}, \ldots, w_i) = p_{ML}(w_{i-n+2}, \ldots, w_i)$$

Combining the above with $p_{kn}(w_i|h)$ form yields

$$p_{KN}(w_i|w_{i-n+2}, \ldots, w_{i-1}) = \frac{N_{1+}(\bullet, w_{i-n+2}, \ldots, w_i)}{\sum_{w_i} N_{1+}(\bullet, w_{i-n+2}, \ldots, w_i)}$$

which itself could be KN-smoothed.

A little non-obvious: see SRILM ngram-discount man page for details. (n-1)-order model allocates a bigger portion of the discount to words having more left histories: “APPLE FRANCISCO” is unlikely.
Kneser-Ney smoothing

\[p_{KN}(w_i|h) = \frac{\max\{C(h, w_i) - D, 0\}}{\sum_{w_i} C(h, w_i)} \]

\[+ \frac{D}{\sum_{w_i} C(h, w_i)} N_1+(h, \bullet)p_{KN}(w_i|w_{i-n+2}, \ldots, w_{i-1}) \]

\[p_{KN}(w_i|w_{i-n+2}, \ldots, w_{i-1}) = \frac{N_1+(\bullet, w_{i-n+2}, \ldots, w_i)}{\sum_{w_i} N_1+(\bullet, w_{i-n+2}, \ldots, w_i)} \]

- (n-1)-order model allocates a bigger portion of the discount to words having more left histories: “APPLE FRANCISCO” is unlikely.
- (n-1)-order is not estimating the true distribution \(p(w_i|w_{i-n+2}, \ldots, w_{i-1}) \)!

\[p_{KN}(w_i|w_{i-n+2}, \ldots, w_{i-1}) \neq p(w_i|w_{i-n+2}, \ldots, w_{i-1}) \]
How well do they work?

![Graphs showing cross-entropy and relative performance]

Figure: Baseline LM performance. From previous slide: “On planned speech (Broadcast News corpus, DARPA 1996 and 1997 competitions), the relative WER improvement is 12%-20% for each bit decrease of cross-entropy.”
Outline

1. What?
 - Evaluating Language Model Quality
 - ML Language Model

2. Smoothing
 - Additive Smoothing
 - Good-Turning Smoothing
 - Katz/Good-Turning Smoothing
 - Kneser-Ney Smoothing

3. Pruning
 - Entropy-based Pruning

4. Interaction of Smoothing and Pruning

5. What Else?
Another problem

Language Models can be large - too many parameters for an ASR recognizer to handle efficiently

Solution: Pruning

Remove parameters from an LM by removing explicitly represented n-grams, so they can be approximated by lower-order n-grams

The goal is to remove the n-grams in such a way that minimizes the damage (in terms of cross-entropy) to the LM
Low count cut off pruning

Drop n-grams that are seen less than k times.

- Simple
- Only coarse control of the model size
- For a given model size, lower cross-entropies can be achieved with other pruning methods.
Entropy-based Pruning

Entropy-based Pruning [Stolcke 2000]

Idea: Prune the least damaging n-gram, one at a time, until the model is the desired size.

Least Damaging: The n-gram, whose removal minimize the KL-divergence between the original LM $p(w_i|h)$ and the pruned model $p'(w_i|h)$.

$$D_{KL}(p(w_i|h)||p'(w_i|h)) = \sum_{w_i,h} p(w_i, h) \left(\log p(w_i|h) - \log p'(w_i|h) \right)$$
Entropy-based Pruning advantages

Advantages

- Can prune an arbitrary number of n-grams.
- Raises the entropy less than removing low-count n-grams.
- Can efficiently update the n-gram probabilities and back-offs and only needs the information in the LM being pruned, so there is no need to keep around the original n-gram counts.

Results

- In [Stolcke 2000], authors show that entropy pruning can reduce the size of the LM by a factor of four without increasing the WER of their recognizer, and raising the LM cross-entropy only slightly.
- Entropy-pruning an n-gram model down to the size of an $(n-1)$-gram model yields a lower cross-entropy model than just using an unpruned $(n-1)$-gram model.
Removing an n-gram \(h, w_i \) from \(p(w_i|h) \) changes it only through estimates involving history \(h \), and no other histories. Therefore we can write

\[
D_{KL}(p(w_i|h)||p'(w_i|h)) = \sum_{w_i} p(w_i, h) \left(\log p(w_i|h) - \log p'(w_i|h) \right)
\]

\[
= p(h) \sum_{w_i} p(w_i|h) \left(\log p(w_i|h) - \log p'(w_i|h) \right)
\]

- \(p(h) \) is computed using only the existing model
- important for understanding interaction between pruning and smoothing
Outline

1. What?
 - Evaluating Language Model Quality
 - ML Language Model

2. Smoothing
 - Additive Smoothing
 - Good-Turning Smoothing
 - Katz/Good-Turning Smoothing
 - Kneser-Ney Smoothing

3. Pruning
 - Entropy-based Pruning

4. Interaction of Smoothing and Pruning

5. What Else?
Entropy-based pruning and Knesser-Ney smoothing

Remember pruning criterion:

\[
D_{KL}(p(w_i|h)||p'(w_i|h)) = p(h) \sum_{w_i} p(w_i|h) (\log p(w_i|h) - \log p'(w_i|h))
\]

\(p(h)\) is calculated from the smoothed model model:

\[
p(h) = p(w_{i-n+1}, \ldots, w_{i-1})
\]

\[
= p_{model}(w_{i-n+1}) \prod_{j=1}^{n-2} p_{model}(w_{i-j}|w_{i-n+1}, \ldots, w_{i-j-1})
\]

- Makes sense for Katz/Good-Turing smoothing.
- for Kneser-Ney smoothing the lower order models are not an estimate for the true n-gram distribution.
 - \(p(h)\) calculated from a Kneser-Ney smoothed LM will be a poor estimate of the true distribution.
 - \(D_{KL}(p(w_i|h)||p'(w_i|h))\) will be inaccurate.
Correcting $p(h)$ is not enough.

- Estimating $p(h)$ correctly (say from maximum likelihood or Katz/Good-Turing smoothed models) helps, but still worse than good-turing smoothing + entropy pruning [Chelba, Brants, Neveitt, Xu, 2010].
- Simply removing n-grams from higher-order Kneser-Ney smoothed models introduces problems.
 - (n-1)-order models are not designed to model n-grams which occur in the upper-level models.
- Aggressively pruning the vocabulary hurts KN-smoothed LMs for the same reasons.
 - Words with low token counts are removed \Rightarrow their n-grams are also pruned from the n-order model.
 - (n-1)-models are forced to model (n-1)-grams that were excluded from their training.
Example

3-gram LM with 10,000 word vocabulary, trained on 80% of the Fisher Corpus.

Table: Effect of pruning on the cross-entropy (bits) of smoothed models.

<table>
<thead>
<tr>
<th></th>
<th>GT-smoothing</th>
<th>KN-smoothing</th>
</tr>
</thead>
<tbody>
<tr>
<td>no pruning</td>
<td>6.722</td>
<td>6.686</td>
</tr>
<tr>
<td>pruning</td>
<td>6.809</td>
<td>6.819</td>
</tr>
</tbody>
</table>

see http://mickey.ifp.uiuc.edu/wiki/Fisher_Language_Model for experiments showing these trends
Conclusions

- Knesser-Ney smoothing creates monolithic language models
 - Knesser-Ney smoothing outerperforms Good-Turing smoothing if nothing else is done to it
 - Lower order n-grams cannot be used independently of the highest order n-grams
 - Lower order n-grams are a bad estimate of the true distribution $p(w|h)$
 - Vocabulary pruning and entropy-based pruning ruins a Knesser-Ney smoothed model
- Good-Turing smoothing of n-order LMs contains good (n-1)-order LMs within it
 - Lower order n-grams can be used independently of the highest order n-grams
 - Lower order n-grams are a good estimate of the true distribution $p(w|h)$
 - Vocabulary pruning and entropy-based pruning works OK with a Good-Turing smoothed model
Outline

1. What?
 - Evaluating Language Model Quality
 - ML Language Model

2. Smoothing
 - Additive Smoothing
 - Good-Turning Smoothing
 - Katz/Good-Turning Smoothing
 - Kneser-Ney Smoothing

3. Pruning
 - Entropy-based Pruning

4. Interaction of Smoothing and Pruning

5. What Else?
References

- Stolcke, 2000 “Entropy-based pruning of backoff language models”
- Chelba, Brants, Neveitt, Xu, 2010 “Study on Interaction between Entropy Pruning and Kneser-Ney Smoothing”
- Klakow and Peters 2002 “Testing the correlation of word error rate and perplexity”
- http://mickey.ifp.uiuc.edu/wiki/Fisher_Language_Model