Language Models for Speech Recognition

Arthur Kantor

Department of Computer Science
University of lllinois - Urbana Champaign

September 13, 2010

Outline

@ what?

@ Evaluating Language Model Quality
@ ML Language Model

What?
°

What is a Language Model?

@ Language model: a distribution over possible word strings
@ If we have a sequence wy, ..., w; of | words, the language model is the
distribution

1
p(ws, ..., w)) = [[p(wilwi, ..., wi_+)

i=1

1
~ Hp(Wi|VV/'7H+17“'7 WI'71)

i=1

!
= I p(wilh) (1)
i=1

@ Equation 1 assumes that words are conditionally independent, given
they are separated by a long enough history h of n — 1 words.

@ nis the order of the n-gram language model.

@ Ifi— n+1 < 1, we can simply pad the beginning of the text with a
special <BEGINNING> token.

What?
0

Evaluating Language Model Quality

Evaluating the model quality

Language Model quality is measured with Cross-Entropy

Hpg(w|h) = =) " q(w, h)log p(w|h)

w,h

@ p(w, h) and g(w, h) are the distributions over word
sequences estimated from the training and development
data, respectively.

@ We can write
Hoq(w|h) = Hp(w|h) + Dy (p(w|h)||q(wlh))

so we are minimizing the sum of conditional entropy of
training distribution and the conditional KL-divergence
between the training and development distributions.

What?
oe

Evaluating Language Model Quality

Relationship of cross-entropy and Word Error Rate

@ Difficult to describe analytically

@ Empirically, The WER and model perplexity are related by
the power law [Klakow, Peters 2002]:

log WER = a+ bHpq(w|h)

where a and b are constants that depend on the data and
the quality of the acoustic model.

@ Relative WER improvement is proportional to decrease of
cross entropy of the LM.

@ On planned speech (Broadcast News corpus, DARPA 1996
and 1997 competitions), the relative WER improvement is
12%-20% for each bit decrease of cross-entropy

What?

@00

ML Language Model

The maximum likelihood language model

Let C(x) be the number of times the word string x is seen in the
training corpus.

Maximum Likelihood estimate

sty = S

That was easy, right?

However
pmL(w|h) is a poor estimate when the training data is sparse.

What?
0e0

ML Language Model

The training data is sparse

Fisher corpus:

@ 57036 words, 1.85 x 10" possible trigrams
@ 21.9 million tokens cover at most 0.0000118% of trigrams
If training data sparsity is not a problem, you can make a

higher-order LM with lower cross-entropy, and training data
sparsity again becomes a problem.

What?
ooe

ML Language Model

What'’s the problem?

@ pu(w|h) underestimates the probability of n-grams never
seen in the training data.

e Never-seen ngrams account for a large probability mass of
the true n-gram distribution.
@ pur(w|h) = 0 precludes the recognizer from hypothesizing
w|h even if the acoustic model fits perfectly.

Solution: Smoothing

Raise the probability of low-probability n-grams and lower the
probability of high-probability n-grams

Smoothing

Outline

e Smoothing
@ Additive Smoothing
@ Good-Turning Smoothing
@ Katz/Good-Turning Smoothing
@ Kneser-Ney Smoothing

Smoothing
°

Additive Smoothing

An old problem.

@ Laplace considered smoothing in his “Will the sun rise
tomorrow?” question.

@ Sun not rising is a rare event, unobserved in the known
past. What is the probability p(Sun not rising tomorrow)?

@ According to prior knowledge, two outcomes are possible:
pretend they happened and add them as pseudocounts to

C(x)+1

C(x)+2

@ Generalizing to | V| objects so that w € V, and allowing
pseudocounts smaller than 1, we get

the observed counts. p(x) =

additive smoothing

C(hyw) + «

o wra <1
C(h) + alV] ISEs

Pada(W|h) =

Simple, but yields poor models (discounts too much).

Smoothing
@000

Good-Turning Smoothing

Count-of-counts Definition

@ Group n-grams by the number of times an n-gram was
seen in the training data.

@ Define n, be the total number of n-grams each of which
has been r times (count of counts)

@ Define the event of encountering any n-gram that has been
seen r times in the training data as M,.

@ According to the ML distribution, the probability of seeing

event M, is
ner

pu(Mr) = 7

o
where N is the total number of n-grams: N = " n,
r=1

Smoothing
0e00

Good-Turning Smoothing

Main Idea

Probability mass assigned to all n-grams observed r times in
training data is spread equally among the n-grams seen r — 1

times.
Good-Turing distribution pgr is defined to satisfy

pat(Mr) = pm(Mr1)'
The probability mass assigned to all unseen n-grams is

pat(Mo) = pm(My).
(see the board)

Smoothing
[e]e] le)

Good-Turning Smoothing

Definition

Good-Turing smoothing adjusts the counts r seen in the
training data

par(Mr) = pum(Mry1)
ner* neq(r+1)
N N

*nf—‘r1
r-= r+1
(r+1)

r

Good-Turing Smoothing

r<(h, w;
per(w;, h) = (NI)

Definition requires that n, > 0. In practice only n-grams with
r(h, w;) < k are smoothed, and pgr(h, w;) is re-normalized.

Smoothing
[e]o]e])

Good-Turning Smoothing

Why this particular discount r*?

@ r* is the solution to

T~ E(plC(m) = 1)

where w; is one of s n-grams, with true frequency p;.

@ E(pi|C(w;) = r) is the expected probability for some
n-gram w;, where we don’t know the identity of w; but we
know it was observed C(w;) times in the training data.

Smoothing
@00

Katz/Good-Turning Smoothing

Katz Smoothing

@ In GT smoothing, the discounted probability mass py (M)
is uniformly spread among unseen n-grams.

@ In Katz smoothing, the discounted probability mass is
spread among unseen n-grams weighted by (n-1)-order
model p(W;|Wi_p 2, ...Wi_1)

Smoothing
oeo

Katz/Good-Turning Smoothing

Definition

Katz/Good-Turing smoothing

C(h, w;) ,
ar(h, w; ifr>0

s () = { =G .
QhPkatz(Wil|Wi—nt2, ..., Wi—1) ifr=0

@ For Good-Turing discounting,

r*(h, w;)
h w;) ~
o(hwi) ~ op s
@ «y is chosen so that the probability mass to be allocated by
the (n — 1)-gram model is equal to the probability mass
discounted from the r > 0 n-grams.

Smoothing
ooe

Katz/Good-Turning Smoothing

Computing oy,

Katz/Good-Turing smoothing

d:(h, WI)W ifr>0

hPkatz(WilWi—ni2, ..., Wi—q) ifr=20

Prkatz(wilh) = {

@ Let

C(h, w;
Pratz(Molh) = 1 — Z df(h»Wi) ()
C(h)
{w;:C(h,w;)>0}
be the probability mass allocated to the event of
encountering any n-gram unseen in the training data given
a history h.
@ oy must satisfy

an Y Praz(WilWini2, o Wim1) = Pratz(Mo| h)
{w;:C(h,w;)=0}

Smoothing
@000

Kneser-Ney Smoothing

Motivation

@ Consider a bigram LM where the phrase “SAN
FRANCISCOQO” is frequent, and “FRANCISCQO” is almost
always preceded by the word “SAN”.

@ The unigram probability of “FRANCISCO” will be high, and
with pkaiz(w;| h) it will have a high probability following
some unseen history, say “APPLE FRANCISCO”.

@ But this is probably wrong, because “FRANCISCO” should
only follow the one history “SAN”.

Kneser-Ney smoothing addresses this situation.

Smoothing
[e] lele)

Kneser-Ney Smoothing

Definition

Let Ny (h, e) be the number of unique n-grams seen in the
training one or more times with history h.

Kneser-Ney smoothing

prau(w) =S 20

D
WNH(/L o) okn(WiWi—nt2, ..., Wi—1)
Wi s Y

D < 1 is the absolute discount subtracted from all n-grams
seen in the training data.

+

Smoothing
ooeo

Kneser-Ney Smoothing

Derivation of pxn(Wi|wi_pi2,..., Wi_1)

The original objective for Knesser-Ney smoothing was for the
smoothed distribution marginalized over the left-most word in
the history to equal the marginalized ML distribution:

> Pk (Wisnit, - Wi) = PrL(Wizny2, -, W)
Wi—nt1
Combining the above with p,(w;|h) form yields

N1+(’, Wi—n+27 ceey Wi)
w;|W;_ e Wiq) =
PN (Wi Wi—pi2, -, Wi—1) >ow N1 (o Wiopio, ..., W)

which itself could be KN-smoothed.

A little non-obvious: see SRILM ngram-discount man page for details.
(n-1)-order model allocates a bigger portion of the discount to
words having more left histories: “APPLE FRANCISCO” is
unlikely.

Smoothing
[e]e]e])

Kneser-Ney Smoothing

Some comments

Kneser-Ney smoothing

max{C(h, w;) — D, 0}

prn(wilh) = S, C(h,w;)
) ,

+ WN1+(/77 .)pKN(Wi|Wi7n+2, ey W,-71)

N1+(.7 Wi_ny2, ..., VVI)
pKN(WI|WI_n+2’ o WI_1) B ZW,- N1+(.7 Wi—ny2, ..., VVI)

@ (n-1)-order model allocates a bigger portion of the discount
to words having more left histories: “APPLE FRANCISCO”
is unlikely.

@ (n-1)-order is not estimating the true distribution
p(W," Wi_nto, ..., Wi_q)'

PrN(WilWi—ni2, ..., Wi_1) # P(Wi|Wi_ny2, ..., Wi_1)

Smoothing

How well do they work?

cross-entropy of baseline for Switchboard and Broadcast News corpora 5 relative performance of algorithms on Switchboard corpus, trigram

0.05
abs-disc-interp

. — i
0 jelinek-mercer-baseline T
<005 |

0.1 jelinek-mercer

% 3.BN ggram:

cross-entropy of test data (bits/token)

015 g
S SWB 2-gram 1 =
- SWB 3-gram BN 3-gram] 02 kneser-ney-mod
100 1000 10000 100000 100 1000 10000

difference in test cross-entropy from baseline (bits/tok

training set size (sentences) training set size (sentences)

Figure: Baseline LM performance. From previous slide: “On planned
speech (Broadcast News corpus, DARPA 1996 and 1997

competitions), the relative WER improvement is 12%-20% for each bit
decrease of cross-entropy.”

Pruning

Outline

e Pruning

@ Entropy-based Pruning

Pruning

e0

Another problem

Language Models can be large - too many parameters for an
ASR recognizer to handle efficiently

Solution: Pruning

Remove parameters from an LM by removing explicitly
represented n-grams, so they can be approximated by
lower-order n-grams

The goal is to remove the n-grams in such a way that minimizes
the damage (in terms of cross-entropy) to the LM

Pruning
oe

Low count cut off pruning

Drop n-grams that are seen less than k times.
@ Simple
@ Only coarse control of the model size

@ For a given model size, lower cross-entropies can be
achieved with other pruning methods.

Pruning
®00

Entropy-based Pruning

Entropy-based Pruning [Stolcke 2000]

Idea: Prune the least damaging n-gram, one at a time, until the
model is the desired size.

Least Damaging: The n-gram, whose removal minimize the
KL-divergence between the original LM p(w;|h) and the pruned
model p’'(w;|h).

Dy (p(wilh)|p'(wil h)) = Zp w;, h) (log p(wi| h) — log p'(w;|h))

Pruning
ol 1}

Entropy-based Pruning
Entropy-based Pruning advantages

@ Advantages
e Can prune an arbitrary number of n-grams.
e Raises the entropy less than removing low-count n-grams.
e Can efficiently update the n-gram probabilities and
back-offs and only needs the information in the LM being
pruned, so there is no need to keep around the original
n-gram counts.

@ Results

e In [Stolcke 2000], authors show that entropy pruning can
reduce the size of the LM by a factor of four without
increasing the WER of their recognizer, and raising the LM
cross-entropy only slightly.

e Entropy-pruning an n-gram model down to the size of an
(n— 1)-gram model yields a lower cross-entropy model
than just using an unpruned (n — 1)-gram model.

Pruning
ooe

Entropy-based Pruning

Efficient computation of Dy, (p(w;|h)||0'(w;|h))

Removing an n-gram h, w; from p(w;|h) changes it only through
estimates involving history h, and no other histories. Therefore
we can write

D (p(w;|h)||p' (wil h)) Zp w;, h) (log p(w;|h) — log p'(w;|h))

(h) > p(wilh) (log p(wi|h) —log P (w;|h))

wi

@ p(h) is computed using only the existing model

e important for understanding interaction between pruning
and smoothing

Interaction of Smoothing and Pruning

Outline

e Interaction of Smoothing and Pruning

Interaction of Smoothing and Pruning
@000

Entropy-based pruning and Knesser-Ney smoothing

Remember pruning criterion:

Dy (p(wilh)[p (wilh)) = p(h) Y _ p(wilh) (log p(wilh) — log p'(w;|h))

Wi

p(h) is calculated from the smoothed model model:

p(h) = p(Wi—ni1, s Wi—1q)
n—2

= Pmodel(Wi—n+1) H Pmodel(Wi—j|Wi—nt1, .., Wi—j_1)
=1

@ Makes sense for Katz/Good-Turing smoothing.
@ for Kneser-Ney smoothing the lower order models are not
an estimate for the true n-gram distribution.
e p(h) calculated from a Kneser-Ney smoothed LM will be a
poor estimate of the true distribution.
o Dy (p(wilh)||p’ (wi|h)) will be inaccurate.

Interaction of Smoothing and Pruning
[e] le]e]

Correcting p(h) is not enough.

@ Estimating p(h) correctly (say from maximum likelihood or
Katz/Good-Turing smoothed models) helps, but still worse
than good-turing smoothing + entropy pruning [Chelba,
Brants, Neveitt, Xu, 2010].

@ Simply removing n-grams from higher-order Kneser-Ney
smoothed models introduces problems.

@ (n-1)-order models are not designed to model n-grams
which occur in the upper-level models.

@ Aggressively pruning the vocabulary hurts KN-smoothed
LMs for the same reasons.

e Words with low token counts are removed =- their n-grams
are also pruned from the n-order model.

e (n-1)-models are forced to model (n-1)-grams that were
excluded from their training.

Interaction of Smoothing and Pruning
[e]e] o]

3-gram LM with 10,000 word vocabulary, trained on 80% of the
Fisher Corpus.

Table: Effect of pruning on the cross-entropy (bits) of smoothed
models.

| GT-smoothing | KN-smoothing
no pruning | 6.722 6.686
pruning 6.809 6.819

see http://mickey.ifp.uiuc.edu/wiki/Fisher_
Language_Model for experiments showing these trends

http://mickey.ifp.uiuc.edu/wiki/Fisher_Language_Model
http://mickey.ifp.uiuc.edu/wiki/Fisher_Language_Model

Interaction of Smoothing and Pruning
[e]e]e]]

Conclusions

@ Knesser-Ney smoothing creates monolithic language
models
e Knesser-Ney smoothing outerperforms Good-Turing
smoothing if nothing else is done to it
e Lower order n-grams cannot be used independently of the
highest order n-grams
o Lower order n-grams are a bad estimate of the true
distribution p(w|h)
e vocabulary pruning and entropy-based pruning ruins a
Knesser-Ney smoothed model
@ Good-Turing smoothing of n-order LMs contains good
(n-1)-order LMs within it
e Lower order n-grams can be used independently of the
highest order n-grams
e Lower order n-grams are a good estimate of the true
distribution p(w|h)
e vocabulary pruning and entropy-based pruning works OK
with a Good-Turing smoothed model

What Else?

Outline

© What Else?

What Else?
.

References

@ Chen and Goodman, 1998 “An Empirical Study of
Smoothing Techniques for Language Modeling”

@ Stolcke, 2000 “Entropy-based pruning of backoff language
models”

@ http://www.speech.sri.com/projects/srilm/
manpages/ngram-discount.7.html

@ Chelba, Brants, Neveitt, Xu, 2010 “Study on Interaction
between Entropy Pruning and Kneser-Ney Smoothing”

@ Klakow and Peters 2002 “Testing the correlation of word
error rate and perplexity”

@ http://mickey.ifp.uiuc.edu/wiki/Fisher_
Language_Model

http://www.speech.sri.com/projects/srilm/manpages/ngram-discount.7.html
http://www.speech.sri.com/projects/srilm/manpages/ngram-discount.7.html
http://mickey.ifp.uiuc.edu/wiki/Fisher_Language_Model
http://mickey.ifp.uiuc.edu/wiki/Fisher_Language_Model

	What?
	
	Evaluating Language Model Quality
	ML Language Model

	Smoothing
	Additive Smoothing
	Good-Turning Smoothing
	Katz/Good-Turning Smoothing
	Kneser-Ney Smoothing
	

	Pruning
	
	Entropy-based Pruning

	Interaction of Smoothing and Pruning
	

	What Else?
	

