What? 000000	Smoothing 0000000000000	Pruning 00000	Interaction of Smoothing and Pruning	What Else?

Language Models for Speech Recognition

Arthur Kantor

Department of Computer Science University of Illinois - Urbana Champaign

September 13, 2010

What?	Smoothing 0000000000000	Pruning 00000	Interaction of Smoothing and Pruning	What Else?
Outline				

What?

- Evaluating Language Model Quality
- ML Language Model

2 Smoothing

- Additive Smoothing
- Good-Turning Smoothing
- Katz/Good-Turning Smoothing
- Kneser-Ney Smoothing
- 3 Pruning
 - Entropy-based Pruning
- Interaction of Smoothing and Pruning
- 5 What Else?

What is a	a Language M	lodel?		
00000	000000000000000000000000000000000000000	00000	0000	0
What?	Smoothing	Prunina	Interaction of Smoothing and Pruning	What Else?

- Language model: a distribution over possible word strings
- If we have a sequence w₁, ..., w_l of *l* words, the language model is the distribution

$$p(w_1, ..., w_l) = \prod_{i=1}^{l} p(w_i | w_1, ..., w_{i-1})$$

$$\approx \prod_{i=1}^{l} p(w_i | w_{i-n+1}, ..., w_{i-1})$$

$$= \prod_{i=1}^{l} p(w_i | h)$$
(1)

- Equation 1 assumes that words are conditionally independent, given they are separated by a long enough history *h* of *n* − 1 words.
- *n* is the order of the n-gram language model.
- If *i n* + 1 < 1, we can simply pad the beginning of the text with a special <BEGINNING> token.

Evaluating the model guality							
Evaluating Language Model Quality							
What? ○●○○○○	Smoothing 0000000000000	Pruning 00000	Interaction of Smoothing and Pruning	What Else?			

Language Model quality is measured with Cross-Entropy

$$H_{pq}(w|h) = -\sum_{w,h} q(w,h) \log p(w|h)$$

- p(w, h) and q(w, h) are the distributions over word sequences estimated from the training and development data, respectively.
- We can write

$$H_{pq}(w|h) = H_p(w|h) + D_{KL}(p(w|h)||q(w|h))$$

so we are minimizing the sum of conditional entropy of training distribution and the conditional KL-divergence between the training and development distributions.

What?	Smoothing	Pruning	Interaction of Smoothing and Pruning	What Else?
○○●○○○	000000000000	00000		o
Evaluating Languag	ge Model Quality			

Relationship of cross-entropy and Word Error Rate

- Difficult to describe analytically
- Empirically, The WER and model perplexity are related by the power law [Klakow, Peters 2002]:

 $\log WER = a + bH_{pq}(w|h)$

where *a* and *b* are constants that depend on the data and the quality of the acoustic model.

- Relative WER improvement is proportional to decrease of cross entropy of the LM.
- On planned speech (Broadcast News corpus, DARPA 1996 and 1997 competitions), the relative WER improvement is 12%-20% for each bit decrease of cross-entropy

What? ○○○●○○	Smoothing ೦೦೦೦೦೦೦೦೦೦೦೦೦	Pruning 00000	Interaction of Smoothing and Pruning	What Else?		
ML Language N	lodel					
The maximum likelihood language model						

Let C(x) be the number of times the word string x is seen in the training corpus.

Maximum Likelihood estimate $p_{ML}(w|h) = rac{C(h,w)}{C(h)}$

That was easy, right?

However

 $p_{ML}(w|h)$ is a poor estimate when the training data is sparse.

What? ○○○○●○	Smoothing 0000000000000	Pruning 00000	Interaction of Smoothing and Pruning	What Else?				
ML Language M	ML Language Model							
The train	The training data is sparse							

Fisher corpus:

- 57036 words, 1.85×10^{14} possible trigrams
- 21.9 million tokens cover at most 0.0000118% of trigrams

If training data sparsity is not a problem, you can make a higher-order LM with lower cross-entropy, and training data sparsity again becomes a problem.

- *p_{ML}(w|h)* underestimates the probability of n-grams never seen in the training data.
 - Never-seen ngrams account for a large probability mass of the true n-gram distribution.
- *p_{ML}(w|h)* = 0 precludes the recognizer from hypothesizing w|h even if the acoustic model fits perfectly.

Solution: Smoothing

Raise the probability of low-probability n-grams and lower the probability of high-probability n-grams

What? 000000	Smoothing	Pruning 00000	Interaction of Smoothing and Pruning	What Else?
Outline				
1 Wł	nat?			

- Evaluating Language Model Quality
- ML Language Model
- 2 Smoothing
 - Additive Smoothing
 - Good-Turning Smoothing
 - Katz/Good-Turning Smoothing
 - Kneser-Ney Smoothing
- 3 Pruning
 - Entropy-based Pruning
- Interaction of Smoothing and Pruning
- 5 What Else?

What? 000000	Smoothing ●○○○○○○○○○○○	Pruning 00000	Interaction of Smoothing and Pruning	What Else?			
Additive Smoot	thing						
An old	An old problem.						

- Laplace considered smoothing in his "Will the sun rise tomorrow?" question.
- Sun not rising is a rare event, unobserved in the known past. What is the probability p(Sun not rising tomorrow)?
- According to prior knowledge, two outcomes are possible: pretend they happened and add them as pseudocounts to the observed counts. $p(x) = \frac{C(x) + 1}{C(x) + 2}$
- Generalizing to |V| objects so that $w \in V$, and allowing pseudocounts smaller than 1, we get

additive smoothing

$$p_{add}(w|h) = rac{C(h,w) + lpha}{C(h) + lpha |V|}$$
 $0 < lpha \leq 1$

Simple, but yields poor models (discounts too much).

- Group n-grams by the number of times an n-gram was seen in the training data.
- Define *n_r* be the total number of n-grams each of which has been *r* times (count of counts)
- Define the event of encountering *any* n-gram that has been seen *r* times in the training data as *M_r*.
- According to the ML distribution, the probability of seeing event M_r is

$$p_{ML}(M_r) = rac{n_r r}{N}$$

where *N* is the total number of n-grams: $N = \sum_{r=1}^{\infty} n_r$

Probability mass assigned to all n-grams observed r times in training data is spread equally among the n-grams seen r - 1 times.

Good-Turing distribution p_{GT} is defined to satisfy

$$p_{GT}(M_r) = p_{ML}(M_{r+1})^{\prime}$$

The probability mass assigned to all unseen n-grams is $p_{GT}(M_0) = p_{ML}(M_1)$.

(see the board)

Good-Turing smoothing adjusts the counts *r* seen in the training data

$$p_{GT}(M_r) = p_{ML}(M_{r+1})$$

 $rac{n_r r^*}{N} = rac{n_{r+1}(r+1)}{N}$
 $r^* = rac{n_{r+1}}{n_r}(r+1)$

Good-Turing Smoothing

$$p_{GT}(w_i,h) = \frac{r^*(h,w_i)}{N}$$

Definition requires that $n_r > 0$. In practice only n-grams with $r(h, w_i) < k$ are smoothed, and $p_{GT}(h, w_i)$ is re-normalized.

What? 000000	Smoothing ○○○○●○○○○○○○	Pruning 00000	Interaction of Smoothing and Pruning	What Else?		
Good-Turning S	Smoothing					
Why this particular discount r^* ?						

• *r*^{*} is the solution to

$$\frac{r^*}{N} \approx E(p_i | C(w_i) = r)$$

where w_i is one of *s* n-grams, with true frequency p_i .

 E(p_i|C(w_i) = r) is the expected probability for some n-gram w_i, where we don't know the identity of w_i but we know it was observed C(w_i) times in the training data.

What? 000000	Smoothing ○○○○●○○○○○○	Pruning 00000	Interaction of Smoothing and Pruning	What Else?		
Katz/Good-Turning Smoothing						
Katz Smoothing						

- In GT smoothing, the discounted probability mass $p_{ML}(M_1)$ is uniformly spread among unseen n-grams.
- In Katz smoothing, the discounted probability mass is spread among unseen n-grams weighted by (n-1)-order model p(w_i|w_{i-n+2},...w_{i-1})

What? 000000	Smoothing ○○○○○○●○○○○○○	Pruning 00000	Interaction of Smoothing and Pruning	What Else?
Katz/Good-Tur	ning Smoothing			
Definitio	on			

Katz/Good-Turing smoothing $p_{katz}(w_i|h) = \begin{cases} d_r(h, w_i) \frac{C(h, w_i)}{C(h)} & \text{if } r > 0\\ \alpha_h p_{katz}(w_i|w_{i-n+2}, ..., w_{i-1}) & \text{if } r = 0 \end{cases}$

For Good-Turing discounting,

$$d_r(h, w_i) \approx \frac{r^*(h, w_i)}{r(h, w_i)}$$

 α_h is chosen so that the probability mass to be allocated by the (n - 1)-gram model is equal to the probability mass discounted from the r > 0 n-grams.

What? 000000	Smoothing	Pruning 00000	Interaction of Smoothing and Pruning	What Else?
Katz/Good-Tur	ning Smoothing			
Compu	ting α_h			

Katz/Good-Turing smoothing

$$p_{katz}(w_i|h) = \begin{cases} d_r(h, w_i) \frac{C(h, w_i)}{C(h)} & \text{if } r > 0\\ \alpha_h p_{katz}(w_i|w_{i-n+2}, ..., w_{i-1}) & \text{if } r = 0 \end{cases}$$

Let

$$p_{katz}(M_0|h) = 1 - \sum_{\{w_i: C(h,w_i) > 0\}} d_{r(h,w_i)} \frac{C(h,w_i)}{C(h)}$$

be the probability mass allocated to the event of encountering any n-gram unseen in the training data given a history *h*.

α_h must satisfy

$$\alpha_h \sum_{\{w_i: C(h,w_i)=0\}} p_{katz}(w_i|w_{i-n+2},...,w_{i-1}) = p_{katz}(M_0|h)$$

What? 000000	Smoothing	Pruning 00000	Interaction of Smoothing and Pruning	What Else?
Kneser-Ney Smoo	thing			
Motivatio	n			

- Consider a bigram LM where the phrase "SAN FRANCISCO" is frequent, and "FRANCISCO" is almost always preceded by the word "SAN".
- The unigram probability of "FRANCISCO" will be high, and with p_{katz}(w_i|h) it will have a high probability following some unseen history, say "APPLE FRANCISCO".
- But this is probably wrong, because "FRANCISCO" should only follow the one history "SAN".

Kneser-Ney smoothing addresses this situation.

Let $N_{1+}(h, \bullet)$ be the number of unique n-grams seen in the training one or more times with history *h*.

Kneser-Ney smoothing

$$p_{KN}(w_i|h) = \frac{\max\{C(h, w_i) - D, 0\}}{\sum_{w_i} C(h, w_i)} + \frac{D}{\sum_{w_i} C(h, w_i)} N_{1+}(h, \bullet) p_{KN}(w_i|w_{i-n+2}, ..., w_{i-1})$$

D < 1 is the absolute discount subtracted from all n-grams seen in the training data.

The original objective for Knesser-Ney smoothing was for the smoothed distribution marginalized over the left-most word in the history to equal the marginalized ML distribution:

$$\sum_{w_{i-n+1}} p_{KN}(w_{i-n+1}, ..., w_i) = p_{ML}(w_{i-n+2}, ..., w_i)$$

Combining the above with $p_{kn}(w_i|h)$ form yields

$$p_{KN}(w_i|w_{i-n+2},...,w_{i-1}) = \frac{N_{1+}(\bullet,w_{i-n+2},...,w_i)}{\sum_{w_i}N_{1+}(\bullet,w_{i-n+2},...,w_i)}$$

which itself could be KN-smoothed.

A little non-obvious: see SRILM ngram-discount man page for details. (n-1)-order model allocates a bigger portion of the discount to words having more left histories: "APPLE FRANCISCO" is unlikely.

000000 Kneser-Ney Sn			
Some c	omments		

Kneser-Ney smoothing

$$p_{KN}(w_i|h) = \frac{\max\{C(h, w_i) - D, 0\}}{\sum_{w_i} C(h, w_i)}$$

+
$$\frac{D}{\sum_{w_i} C(h, w_i)} N_{1+}(h, \bullet) p_{KN}(w_i|w_{i-n+2}, ..., w_{i-1})$$

$$p_{KN}(w_i|w_{i-n+2}, ..., w_{i-1}) = \frac{N_{1+}(\bullet, w_{i-n+2}, ..., w_i)}{\sum_{w_i} N_{1+}(\bullet, w_{i-n+2}, ..., w_i)}$$

- (n-1)-order model allocates a bigger portion of the discount to words having more left histories: "APPLE FRANCISCO" is unlikely.
- (n-1)-order is not estimating the true distribution $p(w_i|w_{i-n+2},...,w_{i-1})!$

$$p_{KN}(w_i|w_{i-n+2},...,w_{i-1}) \neq p(w_i|w_{i-n+2},...,w_{i-1})$$

What?	Smoothing	Pruning
	000000000000000	

Interaction of Smoothing and Pruning

How well do they work?

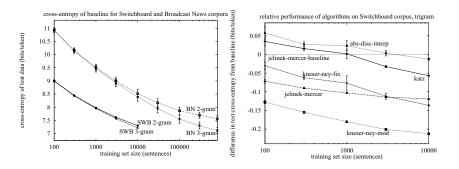


Figure: Baseline LM performance. From previous slide: "On planned speech (Broadcast News corpus, DARPA 1996 and 1997 competitions), the relative WER improvement is 12%-20% for each bit decrease of cross-entropy."

What? 000000	Smoothing	Pruning	Interaction of Smoothing and Pruning	What Else? o
Outline				
	What? Evaluating La ML Language	0 0	Iodel Quality	
	Smoothing Additive Smoo Good-Turning Katz/Good-Tu Kneser-Ney S	Smoothin	oothing	
3 F	Pruning			

- Entropy-based Pruning
- Interaction of Smoothing and Pruning
- 5 What Else?

What? 000000	Smoothing ೦೦೦೦೦೦೦೦೦೦೦೦೦	Pruning ●○○○○	Interaction of Smoothing and Pruning	What Else?
Another	problem			

Language Models can be large - too many parameters for an ASR recognizer to handle efficiently

Solution: Pruning

Remove parameters from an LM by removing explicitly represented n-grams, so they can be approximated by lower-order n-grams

The goal is to remove the n-grams in such a way that minimizes the damage (in terms of cross-entropy) to the LM

What?	Smoothing	Pruning	Interaction of Smoothing and Pruning	What Else?
000000	0000000000000	o●ooo		o
Low cou	nt cut off prui	ning		

Drop n-grams that are seen less than k times.

- Simple
- Only coarse control of the model size
- For a given model size, lower cross-entropies can be achieved with other pruning methods.

What? 000000	Smoothing 0000000000000	Pruning ○○●○○	Interaction of Smoothing and Pruning	What Else?		
Entropy-based	Pruning					
Entropy	Entropy-based Pruning [Stolcke 2000]					

Idea: Prune the least damaging n-gram, one at a time, until the model is the desired size.

Least Damaging: The n-gram, whose removal minimize the KL-divergence between the original LM $p(w_i|h)$ and the pruned model $p'(w_i|h)$.

 $D_{\mathcal{KL}}(p(w_i|h)||p'(w_i|h)) = \sum_{w_i,h} p(w_i,h) \left(\log p(w_i|h) - \log p'(w_i|h)\right)$

What? 000000	Smoothing ०००००००००००००	Pruning ○○○●○	Interaction of Smoothing and Pruning	What Else?
Entropy-based Pru	uning			

Entropy-based Pruning advantages

Advantages

- Can prune an arbitrary number of n-grams.
- Raises the entropy less than removing low-count n-grams.
- Can efficiently update the n-gram probabilities and back-offs and only needs the information in the LM being pruned, so there is no need to keep around the original n-gram counts.
- Results
 - In [Stolcke 2000], authors show that entropy pruning can reduce the size of the LM by a factor of four without increasing the WER of their recognizer, and raising the LM cross-entropy only slightly.
 - Entropy-pruning an n-gram model down to the size of an (n-1)-gram model yields a lower cross-entropy model than just using an unpruned (n-1)-gram model.

 What?
 Smoothing
 Pruning
 Interaction of Smoothing and Pruning
 What Else?

 cooco
 cooco
 cooco
 cooco
 cooco
 cooco
 cooco

 Entropy-based Pruning
 Entropy-based Pruning
 cooco
 cooco
 cooco
 cooco

Efficient computation of $D_{KL}(p(w_i|h)||p'(w_i|h))$

Removing an n-gram h, w_i from $p(w_i|h)$ changes it only through estimates involving history h, and no other histories. Therefore we can write

$$\begin{split} \mathcal{D}_{\mathcal{KL}}(p(w_i|h)||p'(w_i|h)) &= \sum_{w_i} p(w_i,h) \left(\log p(w_i|h) - \log p'(w_i|h)\right) \\ &= p(h) \sum_{w_i} p(w_i|h) \left(\log p(w_i|h) - \log p'(w_i|h)\right) \end{split}$$

- *p*(*h*) is computed using only the existing model
 - important for understanding interaction between pruning and smoothing

What?	Smoothing 0000000000000	Pruning 00000	Interaction of Smoothing and Pruning	What Else?
Outline	9			
1	What? Evaluating La ML Language	0 0	Iodel Quality	
2	Smoothing Additive Smoothing Good-Turning Katz/Good-Tu Kneser-Ney State 	Smoothi	oothing	
3	PruningEntropy-base	d Pruning	1	
4	Interaction of Sn	noothing	and Pruning	

What Else

What?	Smoothing	Pruning	Interaction of Smoothing and Pruning	What Else?
			0000	

Entropy-based pruning and Knesser-Ney smoothing

Remember pruning criterion:

K

$$D_{KL}(p(w_i|h)||p'(w_i|h)) = p(h) \sum_{w_i} p(w_i|h) (\log p(w_i|h) - \log p'(w_i|h))$$

p(h) is calculated from the smoothed model *model*:

$$p(h) = p(w_{i-n+1}, ..., w_{i-1})$$

= $p_{model}(w_{i-n+1}) \prod_{j=1}^{n-2} p_{model}(w_{i-j}|w_{i-n+1}, ..., w_{i-j-1})$

- Makes sense for Katz/Good-Turing smoothing.
- for Kneser-Ney smoothing the lower order models are not an estimate for the true n-gram distribution.
 - *p*(*h*) calculated from a Kneser-Ney smoothed LM will be a poor estimate of the true distribution.
 - $D_{KL}(p(w_i|h)||p'(w_i|h))$ will be inaccurate.

Correcting p(h) is not enough.

- Estimating p(h) correctly (say from maximum likelihood or Katz/Good-Turing smoothed models) helps, but still worse than good-turing smoothing + entropy pruning [Chelba, Brants, Neveitt, Xu, 2010].
- Simply removing n-grams from higher-order Kneser-Ney smoothed models introduces problems.
 - (n-1)-order models are not designed to model n-grams which occur in the upper-level models.
- Aggressively pruning the vocabulary hurts KN-smoothed LMs for the same reasons.
 - Words with low token counts are removed ⇒ their n-grams are also pruned from the n-order model.
 - (n-1)-models are forced to model (n-1)-grams that were excluded from their training.

What? 000000	Smoothing 0000000000000	Pruning 00000	Interaction of Smoothing and Pruning	What Else?
Example				

3-gram LM with 10,000 word vocabulary, trained on 80% of the Fisher Corpus.

Table: Effect of pruning on the cross-entropy (bits) of smoothed models.

	GT-smoothing	KN-smoothing
no pruning	6.722	6.686
pruning	6.809	6.819

see http://mickey.ifp.uiuc.edu/wiki/Fisher_
Language_Model for experiments showing these trends

What? 000000	Smoothing ೦೦೦೦೦೦೦೦೦೦೦೦	Pruning 00000	Interaction of Smoothing and Pruning	What Else?

Conclusions

- Knesser-Ney smoothing creates monolithic language models
 - Knesser-Ney smoothing outerperforms Good-Turing smoothing if nothing else is done to it
 - Lower order n-grams cannot be used independently of the highest order n-grams
 - Lower order n-grams are a bad estimate of the true distribution p(w|h)
 - vocabulary pruning and entropy-based pruning ruins a Knesser-Ney smoothed model
- Good-Turing smoothing of n-order LMs contains good (n-1)-order LMs within it
 - Lower order n-grams can be used independently of the highest order n-grams
 - Lower order n-grams are a good estimate of the true distribution p(w|h)
 - vocabulary pruning and entropy-based pruning works OK with a Good-Turing smoothed model

What? 000000	Smoothing 0000000000000	Pruning 00000	Interaction of Smoothing and Pruning	What Else?
Outlin	e			
1	What? • Evaluating La • ML Language	0 0	Model Quality	
2	Smoothing Additive Smoot Good-Turning Katz/Good-Tur Kneser-Ney State 	Smooth Irning Si	moothing	
3	PruningEntropy-based	d Prunir	ıg	
4	Interaction of Sn	noothing	and Pruning	

5 What Else?

- Chen and Goodman, 1998 "An Empirical Study of Smoothing Techniques for Language Modeling"
- Stolcke, 2000 "Entropy-based pruning of backoff language models"
- http://www.speech.sri.com/projects/srilm/ manpages/ngram-discount.7.html
- Chelba, Brants, Neveitt, Xu, 2010 "Study on Interaction between Entropy Pruning and Kneser-Ney Smoothing"
- Klakow and Peters 2002 "Testing the correlation of word error rate and perplexity"
- http://mickey.ifp.uiuc.edu/wiki/Fisher_ Language_Model